This page looks best with JavaScript enabled

Shortest Paths Algorithms

 ·  ☕ 3 min read · 👀... views

Dijkstra’s algorithm

for a given node, find the shortest path between that node and every other.

shortest path

code example: from AC/Algorithms/Dijkstra

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <iostream>
#include <queue>
#include <unordered_map>
#include <vector>

using namespace std;

/**
 * compute shortest distance from src to all other nodes
 */
void dijkstra(const vector<unordered_map<int, int>>& G, int src,
              vector<int>& dist) {
  int n = G.size();
  dist.clear();
  dist.resize(n, -1);
  vector<bool> vis(n);
  priority_queue<pair<int, int>> pq;  // {-weight, label}
  pq.emplace(0, src);
  dist[src] = 0;
  while (!pq.empty()) {
    auto p = pq.top();
    pq.pop();
    vis[p.second] = true;
    for (auto neighbor : G[p.second]) {
      int v = neighbor.first;
      int d = neighbor.second - p.first;
      if (vis[neighbor.first]) continue;
      if (dist[v] == -1 || dist[v] > d) {
        pq.emplace(-d, v);
        dist[v] = d;
      }
    }
  }
}

template <typename T>
void printArr(const vector<T>& arr) {
  for (const T& t : arr) cout << t << " ";
  cout << endl;
}

int main(int argc, char const* argv[]) {
  vector<vector<int>> edges = {
      {0, 1, 100}, {1, 2, 100}, {0, 2, 500}};  // {src, dst, weight}, ...
  int N = 3;
  vector<unordered_map<int, int>> G(N);
  for (const auto& edge : edges) {
    G[edge[0]][edge[1]] = edge[2];
  }
  vector<int> dist;
  int src = 0;
  dijkstra(G, src, dist);
  printArr(dist);
  return 0;
}

path reconstruction

every time a shorter dist for a node is found (relaxation), record the source node to this node of current edge.

negative cycle detection

do not allow negative weight edges, cannot detect negative cycle

Bellman-Ford/SPFA algorithm

like Dijkstra’s algorithm, finds the shortest path between a source node to all other nodes but allows negative weights and negative cycles.

refer to:

shortest path

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
bool solve() {
  int n, m, START = 1;
  cin >> n >> m;
  // read graph
  vector<unordered_map<int, int>> graph(n + 1);
  for (int i = 0; i < m; ++i) {
    int s, t, w;
    cin >> s >> t >> w;
    graph[s][t] = graph[s].count(t) ? min(w, graph[s][t]) : w;
    if (w >= 0) {
      graph[t][s] = graph[t].count(s) ? min(w, graph[t][s]) : w;
    }
  }

  // the order (0 indexed) of a shortest path, if >= n, then negative cycle detected
  vector<int> cnt(n + 1);
  vector<int> dist(n + 1, INT32_MAX);
  dist[START] = 0;

  priority_queue<int> q;
  q.push(START);
  vector<bool> in_queue(n);
  while (!q.empty()) {
    int source = q.top();
    q.pop();
    in_queue[source] = false;
    // iterate through all neighbors
    for (auto neighborWeight: graph[source]) {
      // relaxation
      if (neighborWeight.second + dist[source] < dist[neighborWeight.first]) {
        dist[neighborWeight.first] = neighborWeight.second + dist[source];
        cnt[neighborWeight.first] = cnt[source] + 1;
        if (cnt[neighborWeight.first] >= n) {
          // loop detected
          return true;
        }
        if (!in_queue[neighborWeight.first]) {
          in_queue[neighborWeight.first] = true;
          q.push(neighborWeight.first);
        }
      }
    }
  }
  return false;
}

path reconstruction

as in Dijkstra’s algorithm, in each relaxation of an edge, record the source node of the edge.

negative cycle detection

  • Bellman-Ford: after relaxing edges \(V-1\) iterations, in the $V$-th relaxation, if more shorter distances can be found, then there’s a cycle.
  • SPFA: in each relaxation, record the shortest path length, if path length >= number of nodes, meaning some nodes have appeared twice on this path, i.e. a negative cycle.

code practices

Floyd’s algorithm

find shortest paths in a directed weighted graph (positive or negative edge weights, no negative cycles)

shortest path

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// https://www.luogu.com.cn/problem/B3647
void solve() {
  // number of nodes and edges
  int n, m;
  cin >> n >> m;

  // all positive weights, use -1 to indicate no edge
  vector<vector<int>> G(n, vector<int>(n, NO_EDGE));
  vector<vector<int>> prev(n, vector<int>(n));

  for (int i = 0; i < n; ++i) {
    G[i][i] = 0;
  }
  for (int i = 0; i < m; ++i) {
    int from, to, weight;
    cin >> from >> to >> weight;
    --from;
    --to;
    G[from][to] = min(weight, G[from][to]);
    prev[from][to] = from;
    // non directed
    G[to][from] = min(weight, G[to][from]);
    prev[to][from] = to;
  }

  // floyd
  for (int k = 0; k < n; ++k) {
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (G[i][k] != NO_EDGE && G[k][j] != NO_EDGE &&
            (G[i][j] == NO_EDGE || G[i][j] > G[i][k] + G[k][j])) {
          G[i][j] = G[i][k] + G[k][j];
          prev[i][j] = prev[k][j];
        }
      }
    }
  }

  for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
      cout << G[i][j] << " ";
    }
    cout << endl;
  }
}

path reconstruction

every time a shorter path between i and j is found by adding node k, update the previous node of j on the shortest path between i and j to that of k and j.

detect negative cycle

when a negative cycle exists, the shortest path between a node and itself will be negative. So, in each iteration, we detect if the shortest distance matrix’s diagonal contains any negative value.

SUMMARY

Algorithm Use cases Time Complexity Space Complexity
Dijkstra single source shortest path, positive weight \(O(\vert{}E\vert{} + \vert{}V\vert{}*\log{\vert{}V\vert})\) \(O(\vert{}V\vert)\)
Bellman-Ford single source shortest path, negative weight, negative cycle \(O(\vert{}V\vert{}*\vert{}E\vert)\) \(O(\vert{}V\vert)\)
floyd shortest path between all nodes, negative weight, negative cycle \(O(\vert{}V\vert{}^{3})\) \(O(\vert{}V\vert^{2})\)
Share on