Dijkstra’s algorithm
for a given node, find the shortest path between that node and every other.
idea: use best first search to explore (visit adjacent nodes of some node) the unexplored node with shortest/best distance.
shortest path
code example: from AC/Algorithms/Dijkstra
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
#include <iostream>
#include <queue>
#include <unordered_map>
#include <vector>
using namespace std;
/**
* compute shortest distance from src to all other nodes
*/
void dijkstra(const vector<unordered_map<int, int>>& G, int src,
vector<int>& dist) {
int n = G.size();
dist.clear();
dist.resize(n, -1);
vector<bool> vis(n);
priority_queue<pair<int, int>> pq; // {-weight, label}
pq.emplace(0, src);
dist[src] = 0;
while (!pq.empty()) {
auto p = pq.top();
pq.pop();
vis[p.second] = true;
for (auto neighbor : G[p.second]) {
int v = neighbor.first;
int d = neighbor.second - p.first;
if (vis[neighbor.first]) continue;
if (dist[v] == -1 || dist[v] > d) {
pq.emplace(-d, v);
dist[v] = d;
}
}
}
}
template <typename T>
void printArr(const vector<T>& arr) {
for (const T& t : arr) cout << t << " ";
cout << endl;
}
int main(int argc, char const* argv[]) {
vector<vector<int>> edges = {
{0, 1, 100}, {1, 2, 100}, {0, 2, 500}}; // {src, dst, weight}, ...
int N = 3;
vector<unordered_map<int, int>> G(N);
for (const auto& edge : edges) {
G[edge[0]][edge[1]] = edge[2];
}
vector<int> dist;
int src = 0;
dijkstra(G, src, dist);
printArr(dist);
return 0;
}
|
path reconstruction
every time a shorter dist for a node is found (relaxation), record the source node to this node of current edge.
negative cycle detection
do not allow negative weight edges, cannot detect negative cycle
Bellman-Ford/SPFA algorithm
like Dijkstra’s algorithm, finds the shortest path between a source node to all other nodes but allows negative weights and negative cycles.
refer to:
Dijkstra’s algorithm uses a priority queue to greedily select the closest vertex that has not yet been processed, and performs this relaxation process on all of its outgoing edges;
by contrast, the Bellman–Ford algorithm simply relaxes all the edges, and does this V-1 times
shortest path
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
bool solve() {
int n, m, START = 1;
cin >> n >> m;
// read graph
vector<unordered_map<int, int>> graph(n + 1);
for (int i = 0; i < m; ++i) {
int s, t, w;
cin >> s >> t >> w;
graph[s][t] = graph[s].count(t) ? min(w, graph[s][t]) : w;
if (w >= 0) {
graph[t][s] = graph[t].count(s) ? min(w, graph[t][s]) : w;
}
}
// the order (0 indexed) of a shortest path, if >= n, then negative cycle detected
vector<int> cnt(n + 1);
vector<int> dist(n + 1, INT32_MAX);
dist[START] = 0;
priority_queue<int> q;
q.push(START);
vector<bool> in_queue(n);
while (!q.empty()) {
int source = q.top();
q.pop();
in_queue[source] = false;
// iterate through all neighbors
for (auto neighborWeight: graph[source]) {
// relaxation
if (neighborWeight.second + dist[source] < dist[neighborWeight.first]) {
dist[neighborWeight.first] = neighborWeight.second + dist[source];
cnt[neighborWeight.first] = cnt[source] + 1;
if (cnt[neighborWeight.first] >= n) {
// loop detected
return true;
}
if (!in_queue[neighborWeight.first]) {
in_queue[neighborWeight.first] = true;
q.push(neighborWeight.first);
}
}
}
}
return false;
}
|
path reconstruction
as in Dijkstra’s algorithm, in each relaxation of an edge, record the source node of the edge.
negative cycle detection
- Bellman-Ford: after relaxing edges \(V-1\) iterations, in the $V$-th relaxation, if more shorter distances can be found, then there’s a cycle.
- SPFA: in each relaxation, record the shortest path length, if path length >= number of nodes, meaning some nodes have appeared twice on this path, i.e. a negative cycle.
code practices
Floyd’s algorithm
find shortest paths in a directed weighted graph (positive or negative edge weights, no negative cycles)
shortest path
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
// https://www.luogu.com.cn/problem/B3647
void solve() {
// number of nodes and edges
int n, m;
cin >> n >> m;
// all positive weights, use -1 to indicate no edge
vector<vector<int>> G(n, vector<int>(n, NO_EDGE));
vector<vector<int>> prev(n, vector<int>(n));
for (int i = 0; i < n; ++i) {
G[i][i] = 0;
}
for (int i = 0; i < m; ++i) {
int from, to, weight;
cin >> from >> to >> weight;
--from;
--to;
G[from][to] = min(weight, G[from][to]);
prev[from][to] = from;
// non directed
G[to][from] = min(weight, G[to][from]);
prev[to][from] = to;
}
// floyd
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (G[i][k] != NO_EDGE && G[k][j] != NO_EDGE &&
(G[i][j] == NO_EDGE || G[i][j] > G[i][k] + G[k][j])) {
G[i][j] = G[i][k] + G[k][j];
prev[i][j] = prev[k][j];
}
}
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cout << G[i][j] << " ";
}
cout << endl;
}
}
|
path reconstruction
every time a shorter path between i and j is found by adding node k, update the previous node of j on the shortest path between i and j to that of k and j.
detect negative cycle
when a negative cycle exists, the shortest path between a node and itself will be negative. So, in each iteration, we detect if the shortest distance matrix’s diagonal contains any negative value.
SUMMARY
Algorithm |
Use cases |
Time Complexity |
Space Complexity |
Dijkstra |
single source shortest path, positive weight |
\(O(\vert{}E\vert{} + \vert{}V\vert{}*\log{\vert{}V\vert})\) |
\(O(\vert{}V\vert)\) |
Bellman-Ford |
single source shortest path, negative weight, negative cycle |
\(O(\vert{}V\vert{}*\vert{}E\vert)\) |
\(O(\vert{}V\vert)\) |
floyd |
shortest path between all nodes, negative weight, negative cycle |
\(O(\vert{}V\vert{}^{3})\) |
\(O(\vert{}V\vert^{2})\) |